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SUMMARY 

Three kinds of grid system based on C-type grid are examined in order to reveal their relative flow 
characteristics of the turbomachinery cascade, especially near the trailing edge and wake. Here, a semi- 
conservative interpolation technique to treat the discontinuous boundary condition along the periodic 
boundary is proposed and is applied on the patched-type grid structure. Computational results are 
presented to see the influence of trailing-edge grid structure on the Navier-Stokes solutions for the 
high-turning transonic turbine cascade. 
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1. INTRODUCTION 

Numerical simulation of viscous compressible flow in turbomachinery cascade involves many 
problems due to the complex geometry of blade but also physical flow phenomena. In general, 
three different types of grid system have been utilized for the analysis of the cascade flow. These 
are the 0-grid (polar-co-ordinate configuration), the C-grid (parabolic-co-ordinate configura- 
tion), and the H-grid (Cartesian-co-ordinate configuration). The latter two systems are parti- 
cularly suitable to viscous flow studies. Specially, the use of C-type grid avoids the singularity as 
in the H-grid at the leading edge when the blade possesses a thick rounded leading edge. As the 
stagger angle increases or when the blade possesses a thick rounded trailing edge typical of 
turbine cascades, due to a large grid skewness and slope discontinuity near the trailing edge, it is 
difficult to predict the flow phenomena accurately by a conventional grid structure. In order to 
predict the complex cascade flow precisely, a suitable grid structure which minimizes disadvan- 
tages of the basic grid structure should be chosen and be followed by an appropriate boundary- 
treating algorithm. 

In the present study, an attempt will be made to investigate the viscous flow characteristics of 
the numerical solution with respect to the mesh structure. In addition, a semi-conservative 
interpolation technique which will run on the zonal-periodic boundary of the patched-type grid 
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structure is proposed. A turbine cascade under the condition of fully turbulent transonic flow is 
analysed to study the influence of grid structure on the numerical solution for typical turbo- 
machinery cascade configurations. 

2. ANALYSIS 

2.1. Choice of grid structures 

In the present study, three types of grid structure based on C-grid system as shown in 
Figures l(a)-l(c) have been examined. The first grid structure (we call it grid I), shown in 
Figure 1 (a), is the conventional type, which is adapted to the main flow but its high skewness on 
the suction surface and near-wake region causes a lot of trouble in grid generation and increases 
the numerical errors of flow solutions. Due to these reasons, it is inadequate for the simulation of 
the viscous flow, especially around the near-wake region. The second structure shown in 
Figure l(b) (termed as grid 11) has blade-conforming meshes much as an 0-grid would have and 
is nearly orthogonal around the near-wake region. Since meshes are not generated such that it 
conforms to the wake flow, the numerical prediction of the viscous flow in the wake region could 
not be satisfactory, especially with a high turning angle of the cascades. To improve the defects of 
the above grid structures, the patched grid (grid 111) was constructed as shown in Figure l(c) and 
the semi-implicit algorithm to treat the discontinuous boundary using the cubic interpolation 
technique is proposed. This grid structure is orthogonal to the wake centreline as well as to the 
blade surface and provides a good resolution not only near the blade surface but also in the wake, 
which is consistent with the boundary layer theory. 

2.2. Treatment of periodic boundary condition 

In the analysis of the flow through turbomachineries, the boundaries of the computational flow 
domain can be classified as inflow and outflow boundaries, impermeable solid-wall boundary on 
the blade surface, and periodic boundaries. Among them, the periodic boundaries are strongly 
associated with the generation of the computational grid and their treatment affects the numerical 
solutions. In grid 11, which is not highly skewed, a co-ordinate line emanating from a particular 
point on the lower boundary is attached to the corresponding periodic point on the upper 
boundary, which is termed as ‘line-periodic’; so, it is possible to impose the repeating boundary 
condition in an implicit manner. With grid I, though it is line-periodic, high skewness and slope 
discontinuity on the suction surface and near-wake region make it difficult to impose the implicit 
boundary treatment. 

Grid I11 allows independent grid generation across the periodic lines. This flexibility results in 
meshes with discontinuous grid lines or grid-line slopes. To treat the discontinuous boundary 
condition along the periodic boundary, a semi-conservative zonal technique is proposed utilizing 
the cubic interpolation technique. A detailed description is given below. 

Grid points along the zonal boundary are defined in Figure 2 and the relationship is 

r(Po) = r(Z, J )  =r(K + AK, J ) = r ( k ,  J ) =  r[<(k)] =r[AK(Z)]. (1) 
For Po(Z, J ) ,  AK(Z) can be found from r(bo)=r(K, J )  using one-dimensional cubic interpolation 
technique as follows 



INFLUENCE OF TRAILING-EDGE GRID STRUCTURE 

Gloval view 

Blow-up near the trailing edge 

(a) 

Figure 1 .  Computational grid for VKI transonic turbine cascade flow: (a) grid I; (b) grid 11; (c) grid 111 
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(b) 

Figure 1 .  (Continued) 
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(c) 

Figure 1. (Continued) 
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Figure 2. Definition of patched grid structure (grid 111) along the periodic boundaries 

where 
<=2/3(k- K - 1/2) and - 1 < t  < 1, 

f-1(0= 1 / W - 0 ( 9 t 2 - 1 ) ,  

f1,3(5)=-9/16(3t+ 1)(t2- I), 

f 1 ( 0 =  1/w + M 9 t 2 -  1). 

f- 1/3(<)=9/16(35- 1)(t2 - 11, 

Using AK(Z), grid point r(Pl), r(P2) and primitive variables Q(P,), Q(P,) i n j = J +  1 a n d j = J + 2  
can be obtained from equation (2) similarly: 

where cp can be primitive flow variables or co-ordinates of grid point. 

2.3. Numerical method 

In the present investigation, the computational method used to solve the Navier-Stokes 
equations for compressible flow in full conservation form is the finite difference method according 
to the implicit LU factorization scheme.' The numerical methods will be reviewed briefly right 
after. 

The Navier-Stokes equations of the two-dimensional unsteady compressible flow for a gener- 
alized co-ordinate system can be written as follows: 

Gz + l$ + 2, =(I& + $ , ) / R e ,  (4) 
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where r? represents the conservation variables, and F̂  are convective flux vectors and R  ̂ and 
ŝ  are the viscous flux vectors. To complete the set of equations, an equation of state for an ideal 
gas was used for the pressure, and the Baldwin-Lomax algebraic model2 was applied for the 
turbulent flow. 

The numerical method applied to the governing equations is based on the implicit LU 
factorization scheme proposed by Obayashi and Kuwahara.' In this method, the flux Jacobian 
matrices which appear in the left-hand side operators in the Beam-Warming method3 are 
decomposed into a product of lower and upper bidiagonal matrices by LU factorization, based 
on the product of flux vector splitting4 and the implicit MacCormack ~ c h e m e , ~  in which the 
simple estimation of eigenvalues of the viscous terms is added. On the other hand, the explicit part 
is left as in the Beam-Warming method, where central differencing is used. The final form of LU 
factorization scheme applied to equation (4) is 

( I  + h V , i +  + c i J  - 'V,J)(Z+ h A , a -  - & J - ' A , J ) ( I +  hV$+ + e i J  -'V,J) 
x ( I  + ~ A , E -  - E J  - 'A,J)A@ = -h(s , (En - i y ~ e ) +  s,(P - 6 / ~ e ) )  -pe +D,I,,)JG", ( 5 )  

where D,I, and D,I, are the dissipative terms, for which an artificial dissipation model having 
a flux limiter' is implemented in the central differencing scheme used here. 

The basic algorithm is first-order accurate in time and second-order accurate in space. The 
scheme requires less computational work and storage since the inversion of the block tridiagonal 
matrices are reduced to the scalar bidiagonal ones. 

3. RESULTS AND DISCUSSION 

To investigate the effect of the three basic mesh structures in Figures l (akl(c)  on the numerical 
simulation of the viscous cascade flow and to verify the effectiveness of the boundary treatment 
technique proposed in Section 2.2, computations were performed for a VKI transonic turbine 
cascade that has high solidity and is highly cambered. Related experiments were done by Kiock et 
aL6 in four European wind tunnels. The solidity of this cascade with respect to chord length is 
1.41, and the flow conditions for computations are transonic with a high flow turning angle: 
Mi, = 0.268, bin = 30°, M e x ,  is = 1.001 and /Iex, is = cos- ' (o/s) = 67.8". Details of the cascade config- 
uration and the flow conditions are described in Reference 6. 

The computational meshes of grids I and I1 are generated using an elliptic grid generating 
method according to GRAPE algorithm' in the entire computational domain. For grid 111, an 
algebraically generated grid at the rear part of the blade and wake field is patched into the 
upstream region, where the elliptic method was used. This modified C-grid structure, as in 
Figure l(c), has been found to reduce the grid skewing in the wake region and much less 
computational time is required by the Poisson solver compared to the standard C-grid applica- 
tions [Figures l(a) and l(b)] for cascades over a wide range of turning and solidity. This grid 
structure is orthogonal to the wake centreline as well as to the blade surface and provide a good 
resolution near the blade surface. Thus, this patched grid provides more flexibility in controlling 
the meshes for a typical turbomachinery cascade than a standard C-grid does, especially with 
a large camber and a rounded edge. 

Figures 3(ak3(c) show the computed distribution of Mach number contour in the passage of 
the cascade. For the transonic flow in a two-dimensional turbine cascade, two weak oblique 
shocks are generated at the trailing edge; the shock at the suction side is dissipated into the 
outward wake fields, while the pressure-side shock interacts with the boundary layer of the 
suction surface of the adjacent cascades, and is then reflected into the downstream passage. The 
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(b) 

Figure 3. Mach number contours: (a) by grid I; (b) by grid 11; (c) by grid 111 
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(c) 

Figure 3. (Continued) 

results of grid I in Figure 3(a) show a qualitative behaviour at the throat of the cascades, but the 
definite transonic flow pattern cannot be found near the trailing edge. In Figure 3(b), the 
behaviour of the suction-side shock agrees well with that of the experiments, but the shock 
interaction with the boundary layer at the throat is not so evident due to the weak shock on the 
suction surface. Inadequate distribution of mesh points in the wake region causes no pattern of 
the viscous flow features in the wake boundary layer. Considering the shapes of grids I and 11, it 
can be concluded that the main reason is the high skewness of the mesh system. In Figure 3(c), the 
behaviour of the suction-side shock agrees well with that of the experiments, and the shock 
interaction with the boundary layer at the throat is more evident than that of the other grid 
structures. 

The distributions of the computed surface Mach number are shown in Figure 4 together with 
the experimental results for comparison. From the experimental results, it can be seen that the 
flow is characterized by acceleration along the suction side up to X/C=O.6  and followed by 
moderate deceleration afterwards. Therefore, this deceleration on the suction side from 
X / C = O 6 5  to 0.98 interacts with the shock and may cause separation of the boundary layer flow. 
It can clearly be seen that only marginal changes occur on the whole pressure side and the suction 
side up to X / C  = 0.55 just before the shock-boundary-layer interaction point. Numerical results 
of the patched grid (grid 111) are seen to agree well with those of the experiments, while those of 
the other grids (grids I and 11) show a little discrepancy on the rear part of the suction, where two 
peaks of surface Mach number are not found, which implies that numerical diffusion of the 
standard grid is so strong that the shock behaviour could not be formed on the throat of the 
passage, as well as in the wake fields. Thus, the patched grid gives a major improvement in 
the prediction of the complex phenomena at the trailing edge. 



892 H.-T. CHUNG AND J.-H. BAEK 

1.2 

m = 1.0 

5 0.8 

w 
w 

3 
z 

Q 
2 

0.6 
Q 
LI 
w 2 0.4 

0.2 ] 
0.0 0.2 0.4 0.6 0.8 1 

X/CHOR D 
Figure 4. Comparison of surface Mach number distributions. 0 Experiment (OX); A Experiment (BS);----grid I; 

_______  grid 11;- grid 111 

In order to be consistent with the boundary layer theory, which is solved along lines 
perpendicular to the surface, computational grids near the trailing edge are required to be normal 
to the wake centreline as well as to the blade surface in order to implement the Baldwin-Lomax 
turbulence model in the present Navier-Stokes scheme. The mesh structure of grid I is not 
consistent with this constraint due to the high skewness. The body-conforming mesh configura- 
tion of grid I1 is good for flow prediction around the blade surfaces but its independence of the 
wake flow causes some trouble in applying this computational grid directly to the calculation of 
the eddy viscosity by the Baldwin-Lomax model. Since the meshes of grid 111 are generated 
conforming to the normal co-ordinate system, both on the blade surface and in the wake flow, 
which are consistent with the boundary layer theory, the eddy viscosity can be computed directly 
on the computational mesh without having to use an additional grid system for an accurate 
implementation of the algebraic turbulence model. This increases the accuracy of the turbulence 
model, particularly in regions of flow where the boundary layer becomes quite thick and allows 
the model to distinguish where and how the eddy viscosity should decrease away from the wall in 
the outer layer. Figure 5 shows the variation of the skin friction coefficient on the suction surface. 
From the result of grid 111, transition is seen to occur between 50 and 60% chord, where the shock 
interacts with the boundary layer on the surface. It is interesting to note that the skin friction of 
grid I is higher than that of grid 111, the reason for which can be induced from the fact that the 
skewness of grid I causes an overestimation of the normal length scale in turbulence modelling. 

The plot of the instantaneous streamlines in Figure 6 shows the flow complexity near the 
trailing edge of the high cambered turbine cascades, where we can find flow separation, stagna- 
tion flow, shock expansion and asymmetric wakes including recirculating bubbles. Not so 
significant difference with respect to the velocity fields could be found between the three types of 
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Figure 5. Skin friction coefficient on the blade suction side: grid I; grid 11; b grid 111 

Figure 6. Instantaneous streamline near the trailing edge in turbine cascades: (a) stagnation point; (b) separation point; 
(c) assumed wakeline; (d) computed wakeline 

grid structures. It shows the inadequacy of the present Baldwin-Lomax model for the simulation 
of the turbulent flow in the near-wake region around a thick rounded trailing edge. The guessed 
wake centreline used as the branch cut of grids I and I11 deviates from the actual one, so, the grid 
is not properly clustered to the shear layer of the wake region. To predict the flow features more 
precisely near the trailing edge of the cascades, the wakeline-adapted meshes should be used in 
addition to the physically plausible modelling of turbulent flow by the blade-wake interaction 
near the trailing edge. 

4. CONCLUSIONS 

To predict flow fields around the turbomachinery cascade using the Navier-Stokes equations, 
especially near the trailing edge and wake, three types of grid structure based on C-grid system 
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are examined with respect to their relative characteristics. Since a semi-conservative zonal 
technique using a modified cubic interpolation technique coupled with the patched grid structure 
provides nearly orthogonal grid structure near the trailing edge, it shows good numerical 
solutions than those of the conventional grid structures. Numerical results of the high-turning 
transonic turbine cascade flow show the influence of trailing-edge grid structure on the 
Navier-Stokes solutions through comparisons with the experimental data and the numerical 
results of each grid structure. 

A, B 

F a  
h 
I 
J 
M 
Re 
r 

APPENDIX: NOMENCLATURE 

convective Jacobian matrix in the 5 and ‘1 directions 
artificial dissipation terms 
inviscid flux vectors in the 4 and ‘1 directions 
cubic interpolation function defined in equation (2) 
time step ( = A t )  
identity matrix 
Jacobian associated with the co-ordinate transformation 
Mach number 
Reynolds number based on the inlet sonic speed 
position vector (= dX + y c )  
viscous flux vectors in the 5 and q directions 
vector of dependent variables 
Cartesian or physical co-ordinate system 

Greek characters 

B, D s  

E2r E4 

Ee 
4 1  ‘1 generalized co-ordinate system 
T dimensionless time 
cp 

flow angle and blade stagger angle relative to the cascade axis 
second and fourth-order artificial viscosity coefficient for implicit smoothing 
artificial viscosity coefficient for explicit smoothing 

primitive flow variables or co-ordinates of grid point in equation (3) 
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